723 research outputs found

    Optimal VDC service provisioning in optically interconnected disaggregated data centers

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Virtual data center (VDC) is a key service in modern data center (DC) infrastructures. However, the rigid architecture of traditional servers inside DCs may lead to blocking situations when deploying VDC instances. To overcome this problem, the disaggregated DC paradigm is introduced. In this letter, we present an integer linear programming (ILP) formulation to optimally allocate VDC requests on top of an optically interconnected disaggregated DC infrastructure, aiming to quantify the benefits that such an architecture can bring when compared with traditional server-centric DCs. Moreover, a lightweight simulated annealing-based heuristic is provided for the scenarios where the ILP scalability is challenged. The obtained numerical results reveal the substantial benefits yielded by the resource disaggregation paradigm.Peer ReviewedPostprint (author's final draft

    End-to-end 5G service deployment and orchestration in optical networks with QoE guarantees

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThe upcoming 5G deployments will impose stringent requirements. Optical networks control and resource orchestration is set to potentially turn into software-defined approaches in order to address such requirements. As a result, there rises a need for an architectural scheme capable of supporting the different types of services defined for 5G verticals.We present in this paper an architecture enabling end-to-end (E2E) provisioning and monitoring of such 5G services over optical network segments. In particular, the scenario considers the coordination of various optical enabled network segments by a higher level E2E Orchestrator, which provides of network slice deployment and is able to guarantee agreed levels of Quality of Experience (QoE). Moreover, we discuss an example of 5G service provisioning using the proposed architecture to demonstrate its behaviour in front of different network events.Peer ReviewedPostprint (author's final draft

    Cost-efficient virtual optical network embedding for manageable inter-data-center connectivity

    Get PDF
    Network virtualization opens the door to novel infrastructure services offering connectivity and node manageability. In this letter, we focus on the cost-efficient embedding of on-demand virtual optical network requests for interconnecting geographically distributed data centers. We present a mixed integer linear programming formulation that introduces flexibility in the virtual-physical node mapping to optimize the usage of the underlying physical resources. Illustrative results show that flexibility in the node mapping can reduce the number of add-drop ports required to serve the offered demands by 40%.Peer ReviewedPostprint (published version

    On the complexity of configuration and orchestration for enabling disaggregated server provisioning in optical composable data centers

    Get PDF
    Due to the limitations of traditional data center (DC) architectures, the concept of infrastructure disaggregation has been proposed. DC resources are separated into multiple blades to be exploited independently. As a result, composable DC (CDC) infrastructures are achieved, enhancing the modularity of resource provisioning. However, disaggregation introduces additional challenges that need to be carefully analyzed. One relates to the potential complexity increase on the orchestration and infrastructure configuration that need to be performed when provisioning resources to support services. This aspect is highly influenced by the distribution of resources at the physical infrastructure. As such, when analyzing the performance of a CDC, it becomes essential to also study the related operational complexity of the resource orchestration and configuration phases. Furthermore, the requirements of several tenant services may impose heterogeneous deployments over the shared physical infrastructure in the form of either disaggregated single-server or multi-server distributions. The associated orchestration/configuration cost is again highly influenced by the data plane architecture of the CDC. With these aspects in mind, in this paper, we provide a methodology for analysis of the complexity of resource orchestration for a service deployment and the associated configuration cost in optical CDCs, considering various service deployment setups. A selected set of CDC architectures found in the literature is employed to quantitatively illustrate how the data plane design and service deployment strategies affect the complexity of infrastructure configuration and resource orchestration.This work has been supported by the Spanish Government through project TRAINER-B (PID2020-118011GB-C22) with FEDER contribution.Peer ReviewedPostprint (author's final draft

    Lightpath fragmentation for efficient spectrum utilization in dynamic elastic optical networks

    Get PDF
    The spectrum-sliced elastic optical path network (SLICE) architecture has been presented as an efficient solution for flexible bandwidth allocation in optical networks. An homologous problem to the classical Routing and Wavelength Assignment (RWA) arises in such an architecture, called Routing and Spectrum Assignment (RSA). Imposed by current transmission technologies enabling the elastic optical network concept, the spectrum contiguity constraint must be ensured in the RSA problem, meaning that the bandwidth requested by any connection must be allocated over a contiguous portion of the spectrum along the path between source and destination nodes. In a dynamic network scenario, where incoming connections are established and disconnected in a quite random fashion, spectral resources tend to be highly fragmented, preventing the allocation of large contiguous spectrum portions for high data-rate connection requests. As a result, high data-rate connections experience unfairly increased bocking probability in contrast to low data-rate ones. In view of this, the present article proposes a lightpath fragmentation mechanism that makes use of the idle transponders in the source node of a high data-rate connection request to fragment it into multiple low data-rate ones, more easily allocable in the network. Besides, aiming to support such an operation, a light-weight RSA algorithm is also proposed so as to properly allocate the generated lightpath fragments over the spectrum. Benefits of the proposed approach are quantified through extensive simulations, showing drastically reduced high data-rate connection blocking probability compared to a usual contiguous bandwidth allocation, while keeping the performance of low data-rate requests to similar levels.Postprint (author’s final draft

    Evaluation of probabilistic constellation shaping performance in Flex Grid over multicore fiber dynamic optical backbone networks [Invited]

    Get PDF
    In this paper, we present a worst-case methodology for estimating the attainable spectral efficiency over end-to-end paths across a Flex Grid over multicore fiber (MCF) optical network. This methodology accounts for physical link noise, as well as for the signal-to-noise ratio in the Add module (SNR TX ) of spatial-division-multiplexing-enabled reconfigurable optical add and drop multiplexers (SDM-ROADMs), introducing a dominant noise contribution over that of their Bypass and Drop modules. The proposed methodology is subsequently used to quantify the benefits that probabilistic constellation shaping (PCS) can bring to Flex-Grid/MCF dynamic optical backbone networks, compared to using traditional polarization-multiplexed modulation formats. In a first step, insight is provided into the spectral efficiency attainable along the precomputed end-to-end paths in two reference backbone networks, either using PCS or traditional modulation formats. Moreover, in each one of these networks, two SNR TX values are identified: the SNR TX yielding the maximum average paths’ spectral efficiency, as well as an SNR TX that, although slightly degrading the average paths’ spectral efficiency (by 10%), would yet enable a cost-effective SDM-ROADM Add module implementation. Extensive simulations are conducted to analyze PCS offered load gains under 1% bandwidth blocking probability. Furthermore, the study lastly focuses on finding out whether lower fragmentation levels in Flex-Grid/MCF dynamic optical backbone networks can push PCS benefits even further.Funding: Agencia Estatal de Investigación (PID2020-118011GB-C21, PID2020-118011GB-C22, RED2018-102585-T).Peer ReviewedPostprint (author's final draft

    Route, modulation format, MIMO and spectrum assignment in Flex-Grid/MCF transparent optical core networks

    Get PDF
    In this paper, we target an optimal multiple-input multiple-output digital signal processing (MIMO-DSP) assignment to super-channels affected by intercore crosstalk (ICXT) in multicore fiber (MCF) enabled transparent optical core networks. MIMO-DSP undoes ICXT effects, but can be costly with high core density MCFs. Hence, its implementation in the network must be carefully decided. We address our objective as a joint route, modulation format, MIMO and spectrum assignment (RMMSA) problem, for which integer linear programming formulations are provided to optimally solve it in small network scenarios. Moreover, several heuristic approaches are also proposed to solve large-scale problem instances with good accuracy. Their goal is to minimize both network spectral requirements and the amount of MIMO equalized super-channels, taking a crosstalk-free space division multiplexing (SDM) solution as a reference, for example, based on parallel single mode fibers [i.e., a multifiber (MF) scenario]. For our evaluation, we consider several state-of-the-art MCF prototypes and different network topologies. The obtained results, with the considered MCFs, disclose that in national backbone networks, the desirable percentage of super-channels with MIMO equalization to match the performance of an equivalent crosstalk-free SDM solution ranges from 0% to 36, while in continental-wide networks this range raises from 0% to 56%. In addition, in the case of a nonideal MIMO (with a 3 dB/km of crosstalk compensation), such percentages range from 0% to 28% and from 0% to 45% in national and continental-wide backbone networks, respectively, experimenting a performance gap up to 12% with respect to the MF reference scenario.Peer ReviewedPostprint (author's final draft

    Cost-effective ROADM design to maximize the traffic load capacity of u-DWDM coherent metro-access networks

    Get PDF
    The current constant growing in traffic demands caused by the popularization of cloud services, mobile and social networks is requiring architectural changes at the underlying networks so as to provide a more highly dynamic connectivity. Cost-effective and energy efficient solutions are also required in flexible network subsystems in order to make available future sustainable networks. In this context, a novel cost-effective and energy-efficient solution DWDM ROADM (D-ROADM) node design has been recently considered to enable optical Metro-Access networks convergence. In this paper, we assess the D-ROADM capabilities in a dynamic ultra-Dense Wavelength Multiplexing (u-DWDM) coherent Ring Network scenario. In particular, the metric Blocking Bandwidth Probability (BBP) vs. Traffic Load Capacity (TLC) has been considered. Our numerical evaluations show that the performance penalty of cost-effective D-ROADM based networks could be reduced to 35% for 62.5GHz DWDM channels when compared to WSS-based ROADMsPeer ReviewedPostprint (author's final draft

    SliceNet: end-to-end cognitive network slicing and slice management framework in virtualised multi-domain, multi-tenant 5G networks

    Get PDF
    ©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Network slicing has emerged as a major new networking paradigm for meeting the diverse requirements of various vertical businesses in virtualised and softwarised 5G networks. SliceNet is a project of the EU 5G Infrastructure Public Private Partnership (5G PPP) and focuses on network slicing as a cornerstone technology in 5G networks, and addresses the associated challenges in managing, controlling and orchestrating the new services for users especially vertical sectors, thereby maximising the potential of 5G infrastructures and their services by leveraging advanced software networking and cognitive network management. This paper presents the vision of the SliceNet project, highlighting the gaps in existing work and challenges, the proposed overall architecture, proposed technical approaches, and use cases.Peer ReviewedPostprint (author's final draft

    On the benefits of resource disaggregation for virtual data centre provisioning in optical data centres

    Get PDF
    Virtual Data Centre (VDC) allocation requires the provisioning of both computing and network resources. Their joint provisioning allows for an optimal utilization of the physical Data Centre (DC) infrastructure resources. However, traditional DCs can suffer from computing resource underutilization due to the rigid capacity configurations of the server units, resulting in high computing resource fragmentation across the DC servers. To overcome these limitations, the disaggregated DC paradigm has been recently introduced. Thanks to resource disaggregation, it is possible to allocate the exact amount of resources needed to provision a VDC instance. In this paper, we focus on the static planning of a shared optically interconnected disaggregated DC infrastructure to support a known set of VDC instances to be deployed on top. To this end, we provide optimal and sub-optimal techniques to determine the necessary capacity (both in terms of computing and network resources) required to support the expected set of VDC demands. Next, we quantitatively evaluate the benefits yielded by the disaggregated DC paradigm in front of traditional DC architectures, considering various VDC profiles and Data Centre Network (DCN) topologies.Peer ReviewedPostprint (author's final draft
    • …
    corecore